Component score weighting for GMM based text-independent speaker verification
نویسندگان
چکیده
GMM/UBM framework is wildly used in Automatic Speaker Verification (ASV), however, due to the insufficiency of the training data, both the hypothesized speaker and impostors are not well modeled, especially to some of the Gaussian component mixtures. Thus, the Gaussian mixtures in each GMM model have different discriminative capabilities, and the mismatch between testing and training data will also aggravate this situation. In this paper, we propose a novel approach, namely, Component Score Weighing (CSW), to reweight the Gaussian mixtures and highlight those which have high discriminative capability by post-processing the log-likelihood ratio (LLR). The original log-likelihood in GMM systems is assigned to each Gaussian component mixture, deriving two component score serials, which we called the dominant score serial and the residual score serial. A nonlinear score weighting function is then applied to reweigh those scores, respectively. Experiments on NIST 2006 SRE corpus show that, this approach achieves notable performance gains over our previous baseline system (about 12% relative improvement in minimum detection cost function (DCF) value).
منابع مشابه
Text-Independent Speaker Verification via State Alignment
To model the speech utterance at a finer granularity, this paper presents a novel state-alignment based supervector modeling method for text-independent speaker verification, which takes advantage of state-alignment method used in hidden Markov model (HMM) based acoustic modeling in speech recognition. By this way, the proposed modeling method can convert a text-independent speaker verification...
متن کاملImproving Robustness of Speaker Verification by Fusion of Prompted Text-Dependent and Text-Independent Operation Modalities
In this paper we present a fusion methodology for combining prompted text-dependent and text-independent speaker verification operation modalities. The fusion is performed in score level extracted from GMM-UBM single mode speaker verification engines using several machine learning algorithms for classification. In order to improve the performance we apply clustering of the score-based data befo...
متن کاملUsing second order statistics for text independent speaker verification
This paper describes a computationally simple method to perform text independent speaker verification using second order statistics. The suggested method, called Utterance Level Scoring (ULS), allows obtaining a normalized score using a single pass through the frames of the tested utterance. The utterance sample covariance is first calculated and then compared to the speaker covariance using a ...
متن کاملModel selection and score normalization for text-dependent single utterance speaker verification
In this paper, we investigate model selection and channel variability issues on a text-dependent single utterance (TDSU) speaker verification application. Due to the lack of an appropriate database for the task, a multichannel speaker recognition database, which consists of multiple recordings of a single Turkish utterance, is collected. The first set of experiments is devoted to model selectio...
متن کاملText-independent speaker verification using utterance level scoring and covariance modeling
This paper describes a computationally simple method to perform text independent speaker verification using second order statistics. The suggested method, called utterance level scoring (ULS), allows obtaining a normalized score using a single pass through the frames of the tested utterance. The utterance sample covariance is first calculated and then compared to the speaker covariance using a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008